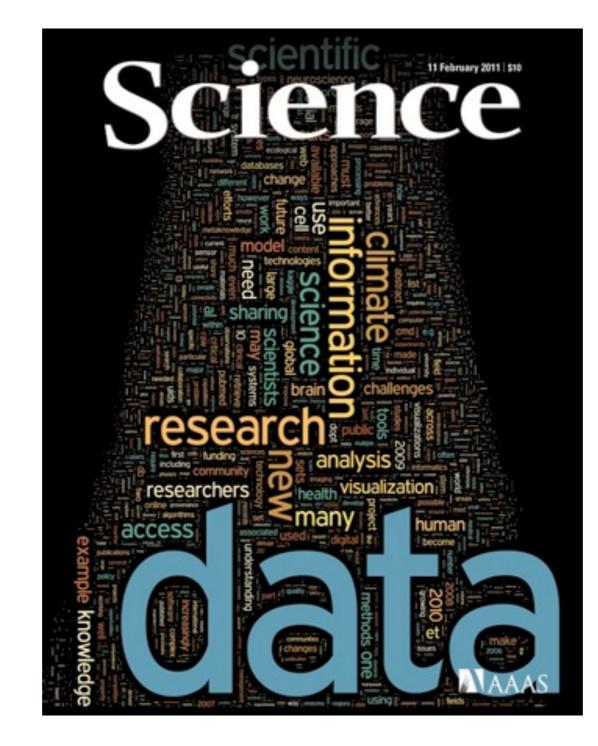
Robustly finding the needles in a haystack of high-dimensional data

Eric Chi

Department of Statistics, Rice University

July 21, 2011

The Haystack of high-dimensional data



The Haystack of high-dimensional data

PERSPECTIVE

More Is Less: Signal Processing and the Data Deluge

Richard G. Baraniuk

The data deluge is changing the operating environment of many sensing systems from data-poor to data-rich—so data-rich that we are in jeopardy of being overwhelmed. Managing and exploiting the data deluge require a reinvention of sensor system design and signal processing theory. The potential pay-offs are huge, as the resulting sensor systems will enable radically new information technologies and powerful new tools for scientific discovery.

A lot of sensor data...

DARPA Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System

- 1.8 gigapixels
- 160 km² (Greater LA)
- 30-cm ground resolution
- Video at 15 frames/sec = 770 gigabits per second

"Data, data everywhere, but not a thought to think"

Q: Are all measurements equally informative?A: Probably not.

"Data, data everywhere, but not a thought to think"

Q: Are all measurements equally informative? A: Probably not.

The key notion: Pareto Principle or 80/20 Rule

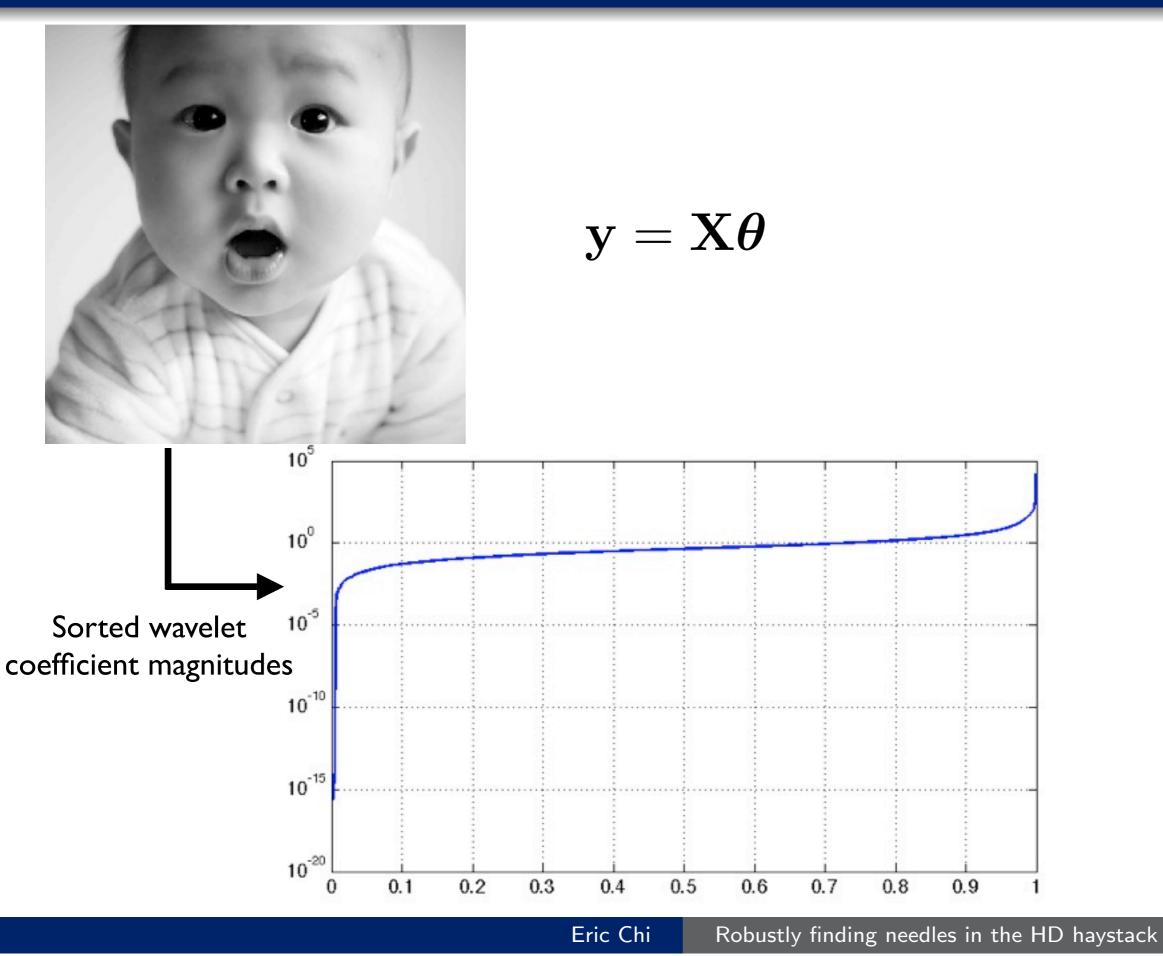
 ${\circ}~80\%$ of an effect comes from 20% of the possible causes.

- Garden: 80% of the peas came from 20% of the pea pods
- Econ: 80% of the land in Italy was owned by 20% of the population
- Business: 80% of your \$\$\$ come from 20% of your clients

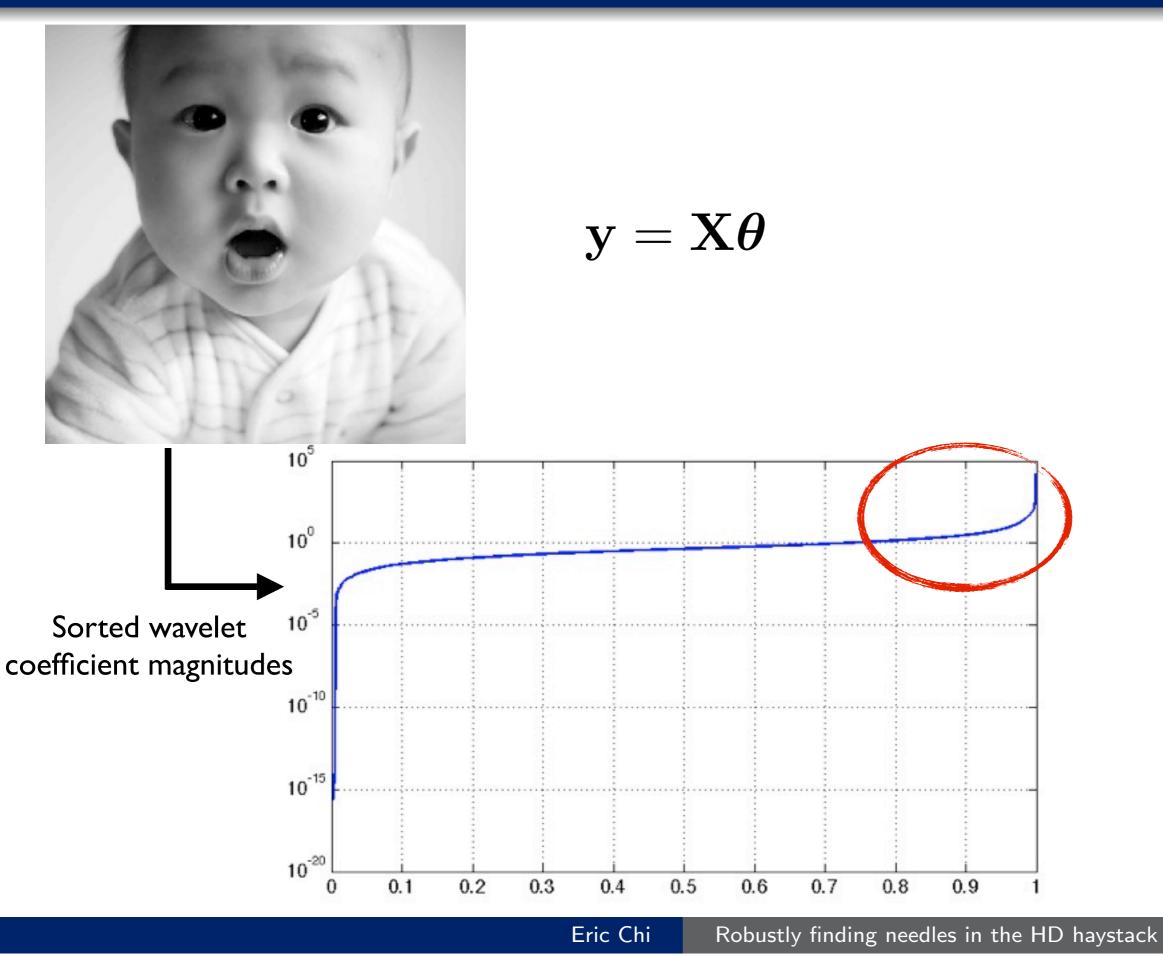
Look at data through the lens of sparsity

Majority of systematic variation in data is due to a minority of possible sources

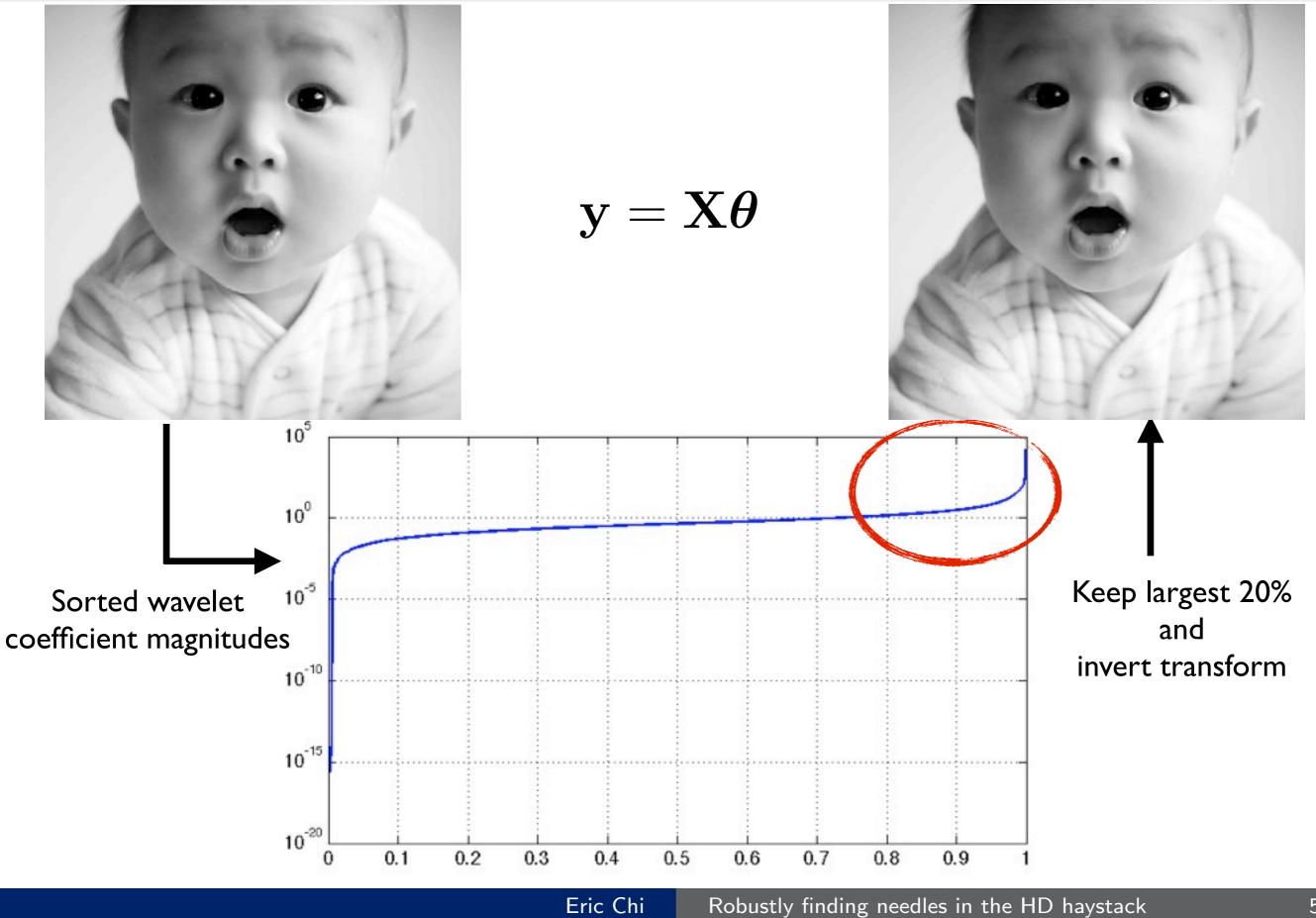
Sparsity and your digital camera



Sparsity and your digital camera



Sparsity and your digital camera



A question about infectious diseases

Why do most people have innate immunity to leprosy? NEJM Dec 31, 2009

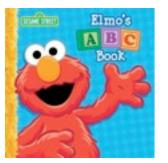
Which genes explain most of the systematic variation?

Predict or explain $\mathbf{y} \in \{0,1\}^n$ using $\mathbf{X} \in \mathbb{R}^{n \times p}$; $n \ll p$.

• SNP: *n* = 1000s, *p* = 100,000s

• **Ss** is for **S**parsity.

- Haystack = all possible sources of variation.
- Needle = minority of sources (sparse set of variables) that explain majority of systematic variation.



105

10

10

10

10-12

10.00

0

0.1

0.3

0.2

0.4

0.5

0.6

0.7

0.8

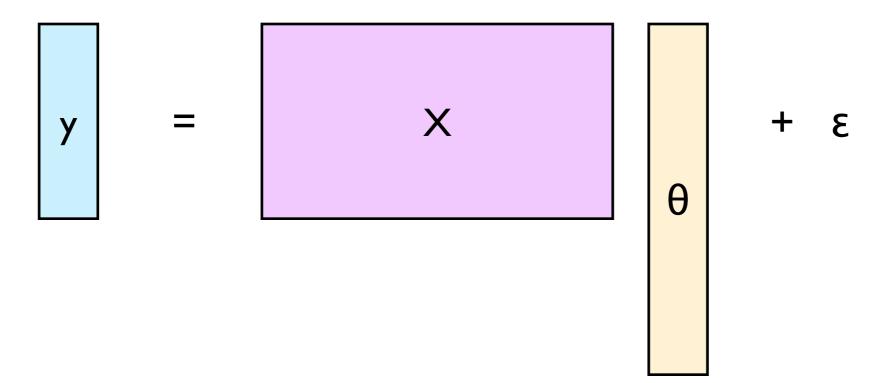
0.9

$$\hat{\theta} = \arg\min_{\theta} \underbrace{L(\mathbf{y}, \mathbf{X}\theta)}_{\text{Lack of fit}} + \underbrace{\lambda J(\theta)}_{\text{Complexity}}$$

$$\hat{\theta} = \underset{\theta}{\arg\min} \underbrace{L(\mathbf{y}, \mathbf{X}\theta)}_{\text{Lack of fit}} + \underbrace{\lambda J(\theta)}_{\text{Complexity}}$$

Least Squares Regression

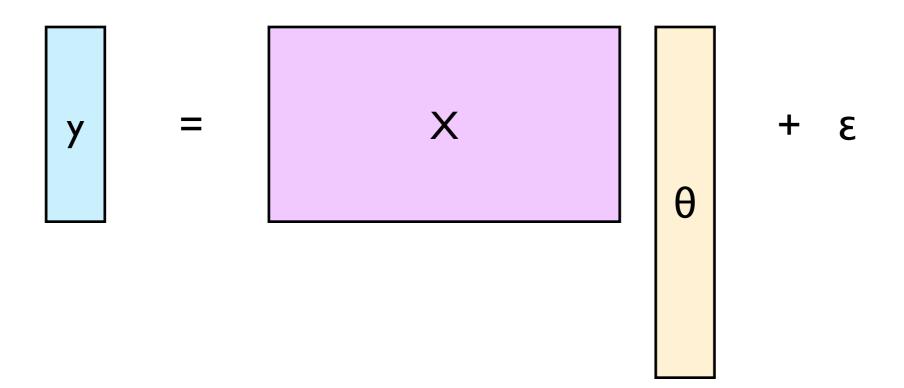
$$L(\mathbf{y}, \mathbf{X}\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

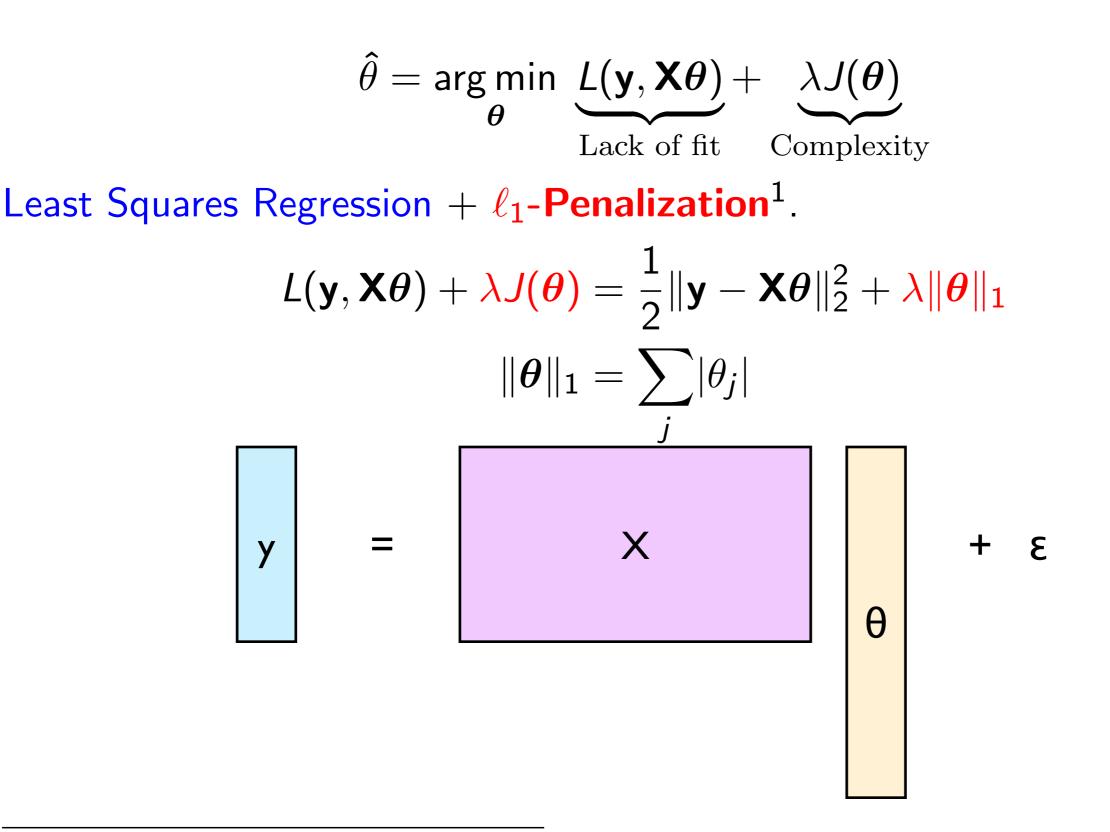


$$\hat{\theta} = \arg\min_{\theta} \underbrace{L(\mathbf{y}, \mathbf{X}\theta)}_{\text{Lack of fit}} + \underbrace{\lambda J(\theta)}_{\text{Complexity}}$$

Least Squares Regression + Ridge/Tikhonov Penalization

$$L(\mathbf{y}, \mathbf{X}\boldsymbol{\theta}) + \lambda J(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$





¹Tibshirani 1996, Chen, Donoho 1995

Eric Chi Robustly finding needles in the HD haystack

Global optimality

Objective	Solution
$rac{1}{2}\ \mathbf{y}-\mathbf{X}m{ heta}\ _2^2$	$\theta_j^* = \mathbf{x}_j^T \mathbf{r}^{(j)}$
$rac{1}{2}\ \mathbf{y}-\mathbf{X}m{ heta}\ _2^2+rac{\lambda}{2}\ m{ heta}\ _2^2$	$ heta_j^* = \mathbf{x}_j^T \mathbf{r}^{(j)} \left(1 + \lambda\right)^{-1}$
$rac{1}{2}\ \mathbf{y}-\mathbf{X}\mathbf{ heta}\ _2^2+\lambda\ \mathbf{ heta}\ _1$	$ heta_j^* = S(\mathbf{x}_j^T\mathbf{r}^{(j)},\lambda)$

jth partial residual

$$r_i^{(j)} = y_i - \sum_{l \neq j} x_{il} \theta_l^*.$$

Residual variation in **y** unexplained after adjusting for the effect of all other predictors, $l \neq j$.

The inner product

 $\mathbf{x}_{j}^{\mathsf{T}}\mathbf{r}^{(j)} = \text{correlation between}$ the *j*th predictor and the *j*th partial residual.

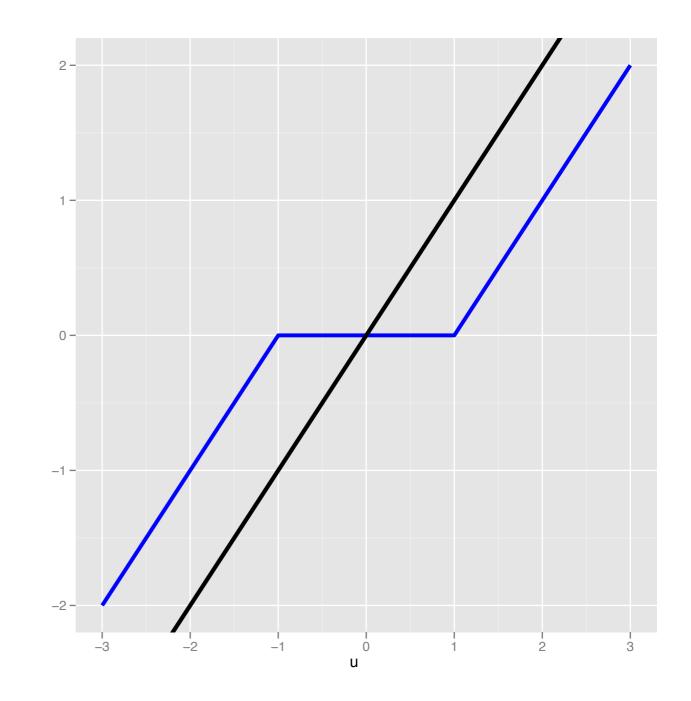
Soft Thresholding

$$S(u,\lambda) = egin{cases} u-\lambda & u>\lambda\ u+\lambda & u<-\lambda\ 0 & |u|\leq\lambda \end{cases}$$

Recall the optimization

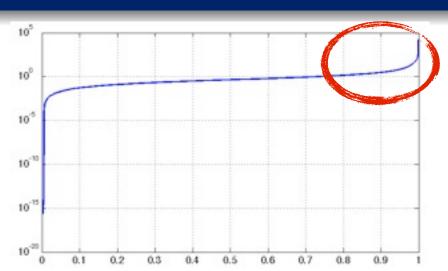
$$\begin{split} \min_{\boldsymbol{\theta}} & \frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2} + \lambda \| \boldsymbol{\theta} \|_{1} \\ & \theta_{j}^{*} = S(\mathbf{x}_{j}^{\mathsf{T}} \mathbf{r}^{(j)}, \lambda) \end{split}$$

N.B. Solutions are biased towards zero!



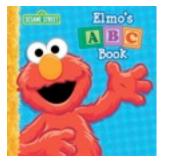
• **Ss** is for **S**parsity.

• Haystack = all possible sources of variation.

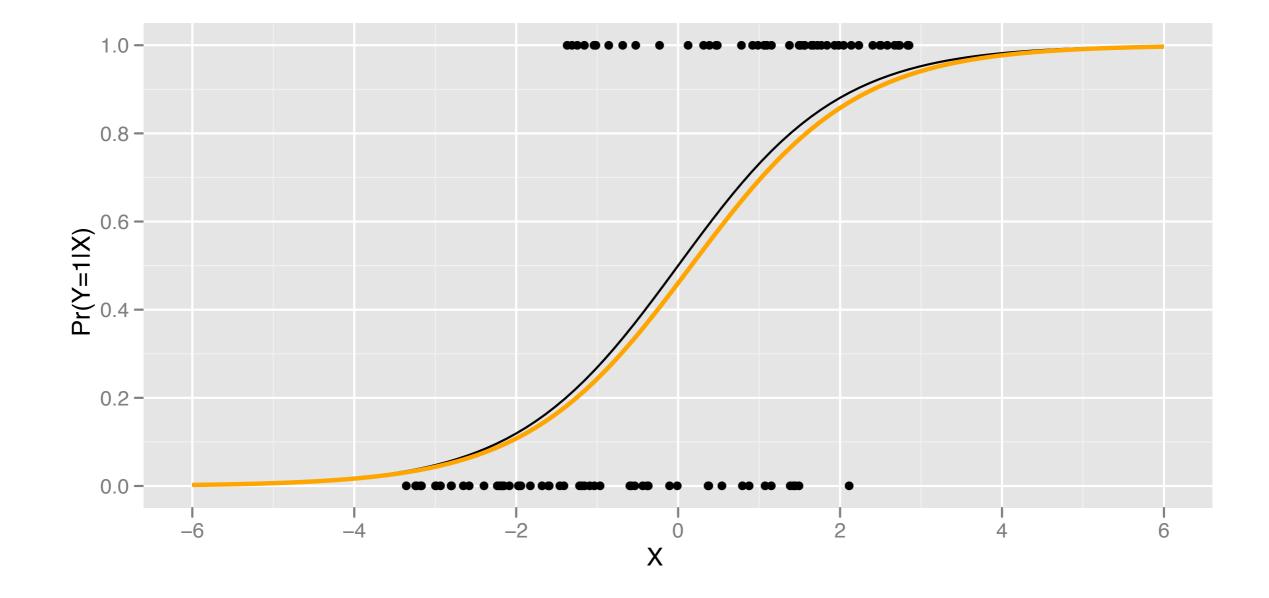


- Needle = minority of sources (sparse set of variables) that explain majority of systematic variation.
- **Ee** is for "ell-one"-penalized regression.

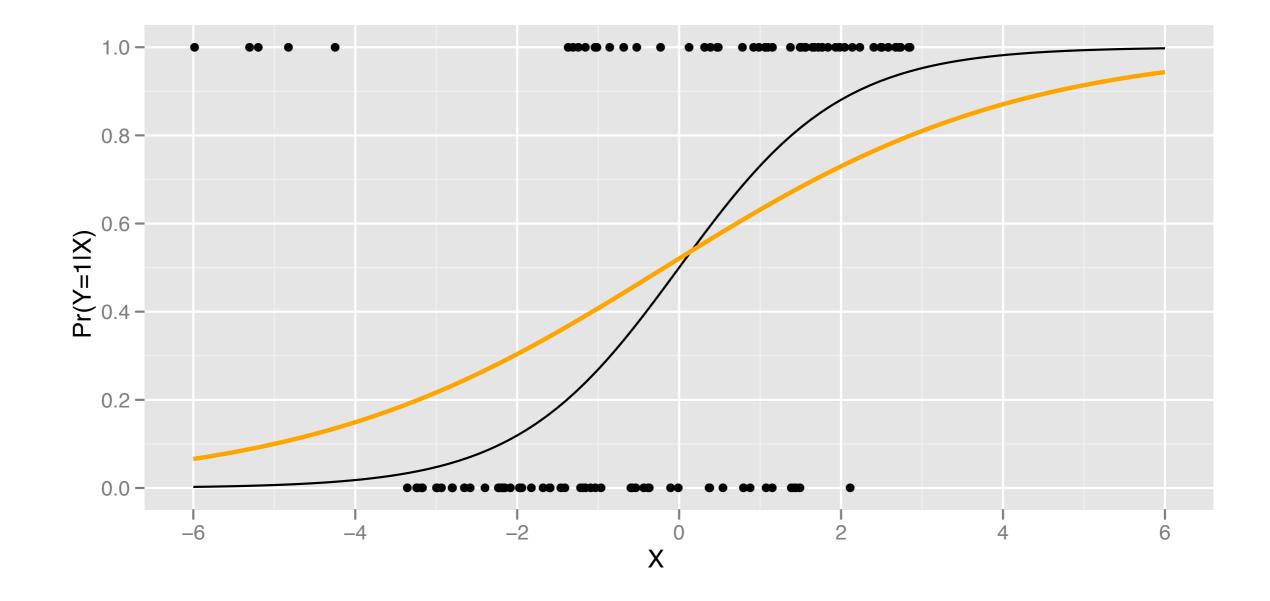
 $\min_{\boldsymbol{\theta}} L(\mathbf{y}, \mathbf{X}\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$



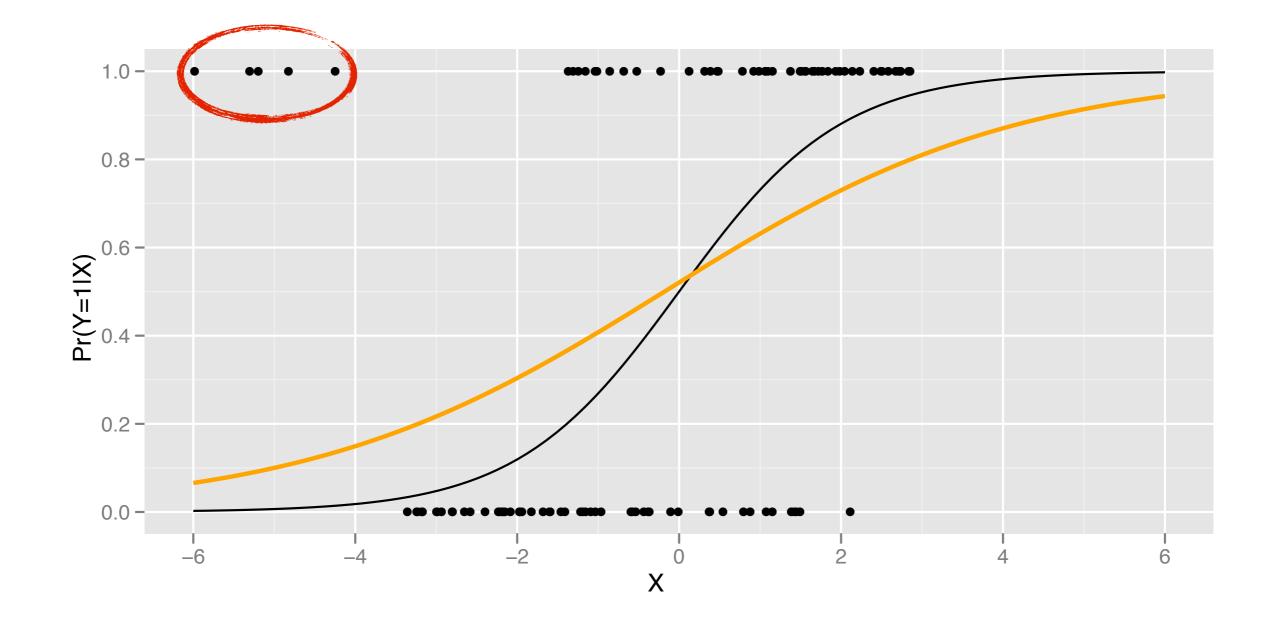
A simple case of logistic regression



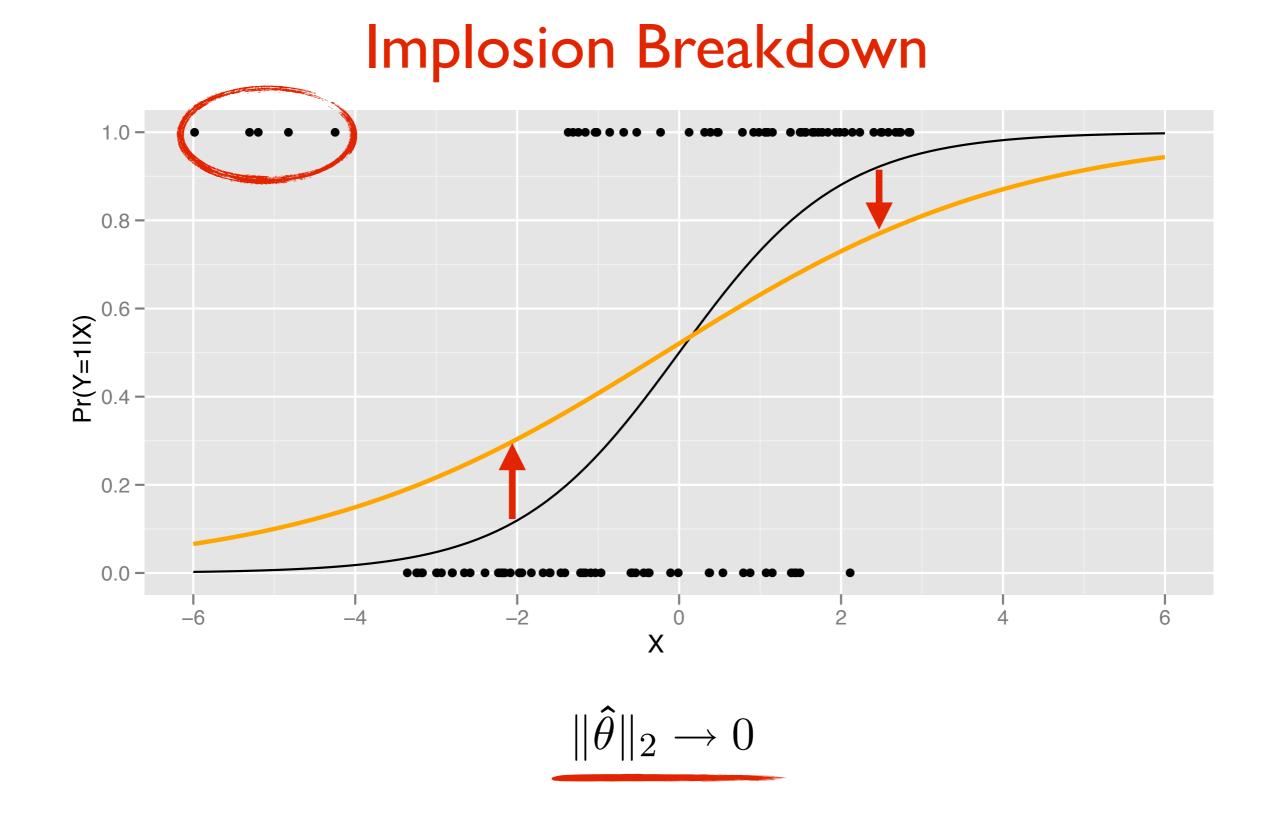
One of these things is not like the others...



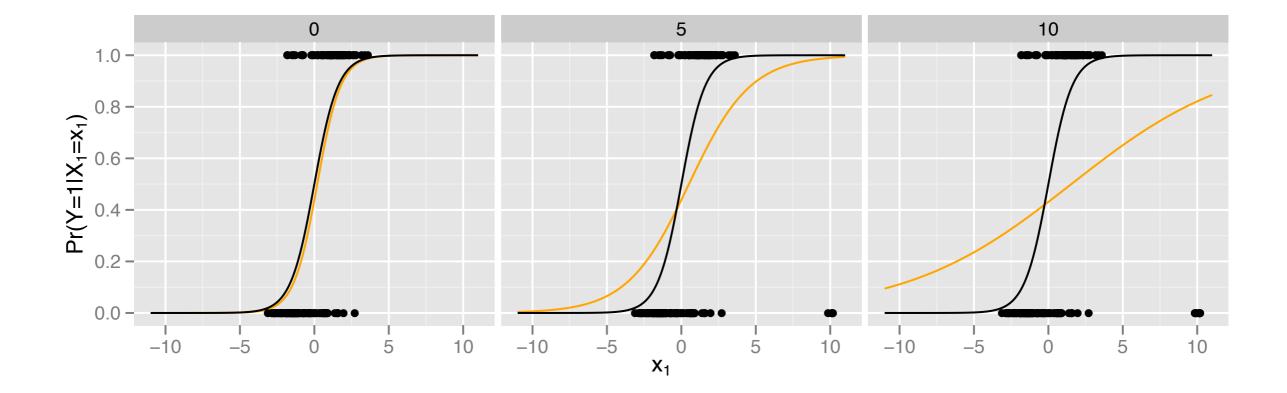
One of these things is not like the others...

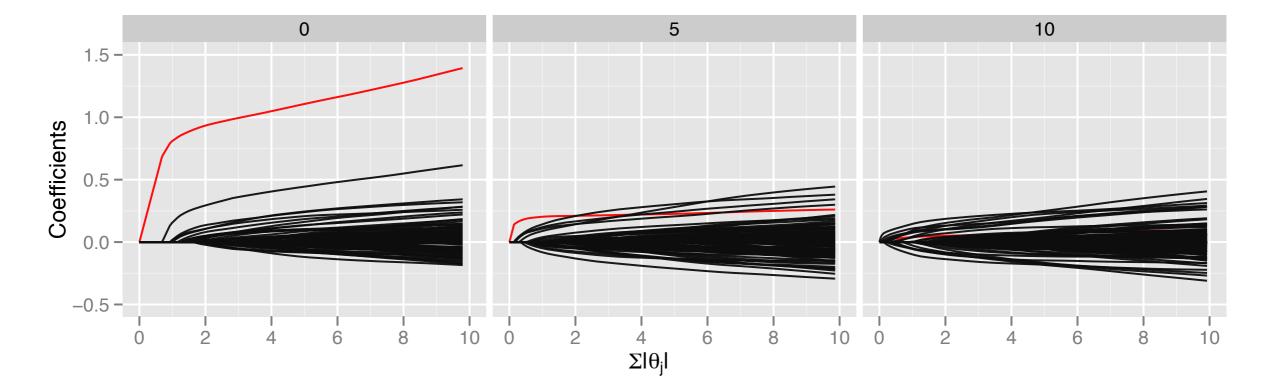


One of these things is not like the others...



Outliers $+ \ell_1$ shrinkage = Unfortunate series of events





Use a different loss function!

β -divergence²

• A family of distortion measures.

$$D_{\beta}(g||f_{\theta}) = \int f_{\theta}^{1+\beta}(z) - \left(1+rac{1}{eta}\right)g(z)f_{\theta}^{\beta}(z) + rac{1}{eta}g^{1+eta}(z)dz.$$

 $\bullet \ \beta$ trades off robustness for efficiency of the resulting estimator.

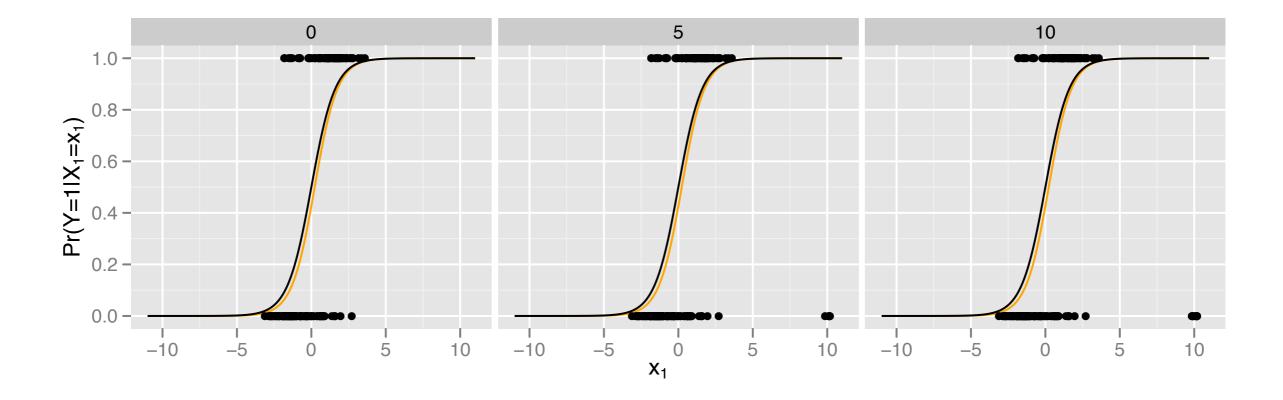
$$\hat{ heta} = rgmin_{oldsymbol{ heta}} \hat{D}_{eta}(\mathbf{y}||f_{oldsymbol{ heta}})$$

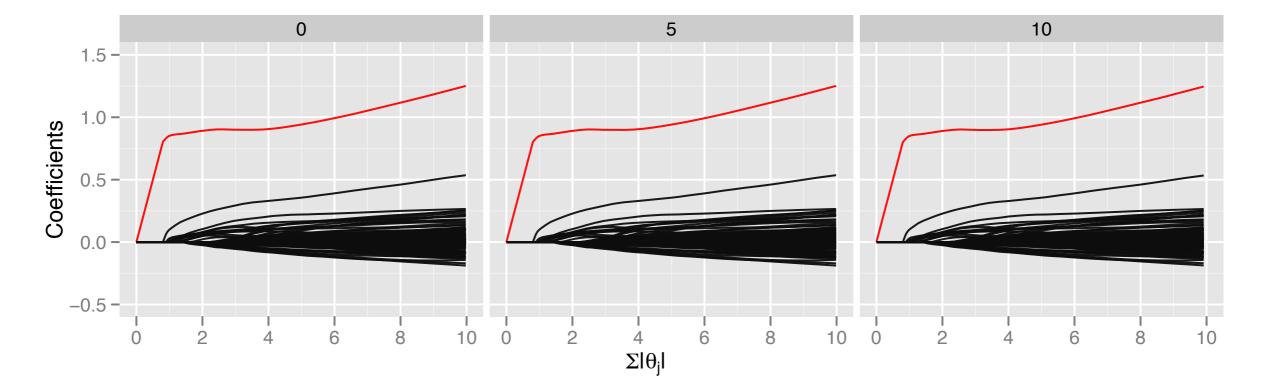
Optimality conditions

 $\max \text{ likelihood } \min \beta \text{-div}$ $\sum_{i=1}^{n} u_{\theta}(y_i) = \mathbf{0} \qquad \sum_{i=1}^{n} u_{\theta}(y_i) f_{\theta}^{\beta}(y_i) = \mathbf{0}$

²Basu et al. 1998

Rescue by min β -div





Computation

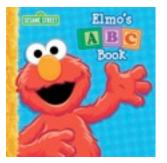
- The optimization problem is *not* convex.
- Solve the problem as a series of convex approximations (Majorizations/Auxiliary functions).
 - Convex + ℓ_1 -penalties well studied.
- Guarantees on convergence to stationary points.
- Some heuristics on choosing starting points.

• **Ss** is for **S**parsity.

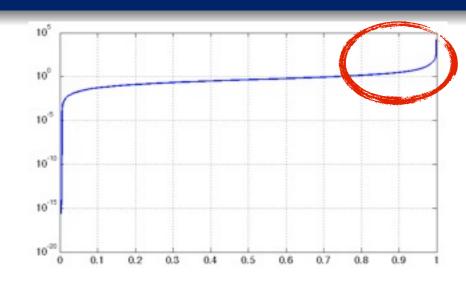
- Haystack = all possible sources of variation.
- Needle = minority of sources that explain majority of systematic variation.
- **Ee** is for "ell-one"-penalized regression.

$$\min_{\boldsymbol{\theta}} L(\mathbf{y}, \mathbf{X}\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$$

- **Bb** is for **B**ias.
 - ℓ_1 -penalization bias + implosion breakdown = missed detections.
 - Fight bias with a robust loss function.



$$\min_{\boldsymbol{\theta}} \hat{D}(\mathbf{y} || f_{\boldsymbol{\theta}}) + \lambda \| \boldsymbol{\theta} \|_{1}$$



- Rice University
 - David Scott
 - Dennis Cox
 - Yin Zhang
 - Hadley Wickham
- LBNL/Berkeley/Sandia
 - Paul Spellman
 - Elizabeth Purdom
 - Tammy Kolda
 - David Gleich
- DOE CSGF & Krell Institute
- The letters **Ss**, **Ee**, and **Bb**

