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The Haystack of high-dimensional data
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The Haystack of high-dimensional data

A lot of sensor data...

DARPA Autonomous Real-Time Ground Ubiquitous Surveillance Imaging
System

1.8 gigapixels

160 km2 (Greater LA)

30-cm ground resolution

Video at 15 frames/sec = 770 gigabits per second
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need to be established if a data-sharing network is
to succeed, particularly when it comes to the
ethical and privacy issues surrounding patient
data (23, 24).

Shifting Attitudes
Widely dispersed researchers in resource-limited
countries may have few opportunities to travel to
courses or attend meetings, but they can meet
online and share experiences, guide each other,
and access resources. Learning and knowledge
sharing online could play a vital role in adjusting
the imbalance in research capacity. However, this
medium for learning needs to become accepted,
and senior research staff need to encourage and
enable their colleagues to take up the numerous
free and open-access learning opportunities that
are increasingly available online (13).

Undoubtedly integration and knowledge shar-
ing can be vastly improved to make the most use
of gathered data, but many organizations in global
health exist to address a single disease or work in
a specific sector. There is a real need for mech-
anisms allowing research organizations, govern-
ments, and universities to collaborate outside their
usual remits and locations tomaximize the impact
of data and available resources.

Governance and ethical issues are also a ma-
jor concern, because if mistakes are made trust
will be quickly lost and enthusiasm for open-

ing access could be stifled. A particular anxi-
ety resulting from disparities between wealthy
and resource-limited nations is the removal of data
and loss of ownership. Ownership and govern-
ance arrangements need to be made transparent-
ly for fair access and maintenance of security,
and whenever possible the technology should be
transferred rather than the data. These issues
therefore need to be tackled openly and compre-
hensively early in the formation of data-sharing
collaborations. Groups would be advised to seek
advice and obtain example policy documents (such
as agreements and terms of reference) from other
successful data-sharing groups.

A striking range of data sets spanning a wide
range of healthcare issues, including infectious
and noncommunicable diseases, are accumulat-
ing with use of new technology and online col-
laboration. All this stands to make real changes in
the lives of people affected by diseases of pov-
erty. While scientists are rapidly adapting and
taking up these approaches, funding agencies and
regulators also need to adapt to ensure that all
interested communities are able to take maximum
advantage of the digital environment to drive
improvements in global health.
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PERSPECTIVE

More Is Less: Signal Processing
and the Data Deluge
Richard G. Baraniuk

The data deluge is changing the operating environment of many sensing systems from data-poor
to data-rich––so data-rich that we are in jeopardy of being overwhelmed. Managing and
exploiting the data deluge require a reinvention of sensor system design and signal processing
theory. The potential pay-offs are huge, as the resulting sensor systems will enable radically
new information technologies and powerful new tools for scientific discovery.

Until recently, the scientist’s problem was
a “sensor bottleneck.” Sensor systems
produced scarce data, complicating sub-

sequent information extraction and interpretation.
In response to the resulting challenge of “doing
more with less,” signal-processing researchers
have spent the last several decades creating power-
ful new theory and technology for digital data
acquisition (digital cameras, medical scanners),
digital signal processing (machine vision; speech,
audio, image, and video compression), and dig-
ital communication (high-speed modems, Wi-Fi)

that have both enabled and accelerated the in-
formation age.

These hardware advances have fueled an even
faster exponential explosion of sensor data produced
by a rapidly growing number of sensors of rapidly
growing resolution. Digital camera sensors have
dropped in cost to nearly $1/megapixel; this has en-
abled billions of people to acquire and share high-
resolution images and videos. Millions of security
and surveillance cameras, including unmanned
drone aircraft prowling the skies, have joined high-
resolution telescopes, digital radio receivers, and
many other types of sensors in the environment.
As a result, a sensor data deluge is beginning to
swamp many of today’s critical sensing systems.

In just a few years, the sensor data deluge
has shifted the bottleneck of many data acqui-
sition systems from the sensor back to the pro-
cessing, communication, or storage subsystems
(Fig. 1). To see why, consider the exponentially
growing gap between global sensing and data
storage capabilities. A recent report (1) found
that the amount of data generated worldwide
(which is now dominated by sensor data) is grow-
ing by 58% per year; in 2010 the world generated
1250 billion gigabytes of data—more bits than all
of the stars in the universe. In contrast, the total
amount of world data storage (in hard drives,
memory chips, and tape) is growing 31% slower,
at only 40% per year. A milestone was reached
in 2007, when the world produced more data
than could fit in all of the world’s storage; in 2011
we already produce over twice as much data as
can be stored. This expanding gap between sen-
sor data production and available data storage
means that sensor systems will increasingly face
a deluge of data that will be unavailable later for
further analysis. Similar exponentially expand-
ing gaps exist between sensor data production
and both computational power and communi-
cation rates.

The danger is that more sensor data can lead
to less efficient sensor systems. Consider two
brief illustrations. The first is the Defense
Advanced Research Projects Agency (DARPA)
Autonomous Real-Time Ground Ubiquitous
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“Data, data everywhere, but not a thought to think”

Q: Are all measurements equally informative?
A: Probably not.

The key notion: Pareto Principle or 80/20 Rule

80% of an effect comes from 20% of the possible causes.
Garden: 80% of the peas came from 20% of the pea pods
Econ: 80% of the land in Italy was owned by 20% of the population
Business: 80% of your $$$ come from 20% of your clients

Look at data through the lens of sparsity

Majority of systematic variation in data is due to a minority of possible
sources
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Sparsity and your digital camera
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Sparsity and your digital camera
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Sorted wavelet
coefficient magnitudes

BRIEF ARTICLE

THE AUTHOR

y = Xθ

1

Keep largest 20%
and

invert transform



Sparsity and genomic data

A question about infectious diseases

Why do most people have innate immunity to leprosy? NEJM Dec 31,
2009

Which genes explain most of the systematic variation?

Predict or explain y ∈ {0, 1}n using X ∈ Rn×p; n << p.

SNP: n = 1000s, p = 100, 000s
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Summary

Ss is for Sparsity.

Haystack = all possible sources of variation.

Needle = minority of sources (sparse set of variables) that explain

majority of systematic variation.

Ee is for “ell-one”-penalized regression.

min
θ

L(y,Xθ) + λ�θ�1

Bb is for Bias.

�1-penalization bias + implosion breakdown = missed detections.

Fight bias with a robust loss function.

min
θ

D̂(y||fθ) + λ�θ�1
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Review: Penalized Regression

θ̂ = arg min
θ

L(y,Xθ)� �� �
Lack of fit

+ λJ(θ)� �� �
Complexity

Least Squares Regression

L(y,Xθ) =
1

2
�y − Xθ�2

2
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Review: Penalized Regression

θ̂ = arg min
θ

L(y,Xθ)� �� �
Lack of fit

+ λJ(θ)� �� �
Complexity

Least Squares Regression + Ridge/Tikhonov Penalization

L(y,Xθ) + λJ(θ) =
1

2
�y − Xθ�2

2 +
λ

2
�θ�2

2
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Review: Penalized Regression

θ̂ = arg min
θ

L(y,Xθ)� �� �
Lack of fit

+ λJ(θ)� �� �
Complexity

Least Squares Regression + �1-Penalization1.

L(y,Xθ) + λJ(θ) =
1

2
�y − Xθ�2

2 + λ�θ�1

�θ�1 =
�

j

|θj |

1Tibshirani 1996, Chen, Donoho 1995
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Global optimality

Objective Solution

1

2
�y − Xθ�2

2
θ∗j = xT

j r(j)

1

2
�y − Xθ�2

2
+

λ
2
�θ�2

2
θ∗j = xT

j r(j) (1 + λ)
−1

1

2
�y − Xθ�2

2
+ λ�θ�1 θ∗j = S(xT

j r(j), λ)

jth partial residual

r (j)
i = yi −

�

l �=j

xilθ
∗
l .

Residual variation in y
unexplained after adjusting

for the effect of all other

predictors, l �= j .

The inner product

xT

j r(j) = correlation between

the jth predictor and the jth
partial residual.
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�1-Penalization and Soft Thresholding

Soft Thresholding

S(u, λ) =






u − λ u > λ

u + λ u < −λ

0 |u| ≤ λ

.

Recall the optimization

min
θ

1

2
�y − Xθ�2

2 + λ�θ�1

θ∗j = S(xT

j r(j), λ)

N.B. Solutions are biased
towards zero! u

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

Eric Chi Robustly finding needles in the HD haystack 12



Summary

Ss is for Sparsity.

Haystack = all possible sources of variation.

Needle = minority of sources (sparse set of variables) that explain

majority of systematic variation.

Ee is for “ell-one”-penalized regression.

min
θ

L(y,Xθ) + λ�θ�1

Bb is for Bias.

�1-penalization bias + implosion breakdown = missed detections.

Fight bias with a robust loss function.

min
θ

D̂(y||fθ) + λ�θ�1
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A simple case of logistic regression

X
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(Y
=1
|X
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One of these things is not like the others...
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Outliers + �1 shrinkage = Unfortunate series of events
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Use a different loss function!

β-divergence2

A family of distortion measures.

Dβ(g ||fθ) =

�
f 1+β
θ (z)−

�
1 +

1

β

�
g(z)f β

θ (z) +
1

β
g1+β

(z)dz .

β trades off robustness for efficiency of the resulting estimator.

θ̂ = arg min
θ

D̂β(y||fθ)

Optimality conditions

max likelihood min β-div

�n
i=1

uθ(yi ) = 0
�n

i=1
uθ(yi )f

β
θ (yi ) = 0

2Basu et al. 1998
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Rescue by min β-div
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The blood, sweat, and tears

Computation

The optimization problem is not convex.

Solve the problem as a series of convex approximations
(Majorizations/Auxiliary functions).

Convex + �1-penalties well studied.

Guarantees on convergence to stationary points.

Some heuristics on choosing starting points.
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Summary

Ss is for Sparsity.

Haystack = all possible sources of variation.

Needle = minority of sources that explain majority of systematic

variation.

Ee is for “ell-one”-penalized regression.

min
θ

L(y,Xθ) + λ�θ�1

Bb is for Bias.

�1-penalization bias + implosion breakdown = missed detections.

Fight bias with a robust loss function.

min
θ

D̂(y||fθ) + λ�θ�1
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