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The Haystack of high-dimensional data

A lot of sensor data...

DARPA Autonomous Real-Time Ground Ubiquitous Surveillance Imaging

PERSPECTIVE

More Is Less: Signal Processing

and the Data Deluge

Richard G. Baraniuk

The data deluge is changing the operating environment of many sensing systems from data-poor
to data-rich—so data-rich that we are in jeopardy of being overwhelmed. Managing and
exploiting the data deluge require a reinvention of sensor system design and signal processing
theory. The potential pay-offs are huge, as the resulting sensor systems will enable radically

new information technologies and powerful new tools for scientific discovery.

System
o 1.8 gigapixels
o 160 km? (Greater LA)
o 30-cm ground resolution
Q

Video at 15 frames/sec = 770 gigabits per second
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"Data, data everywhere, but not a thought to think”

Q: Are all measurements equally informative?
A: Probably not.
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“Data, data everywhere, but not a thought to think”

Q: Are all measurements equally informative?
A: Probably not.

The key notion: Pareto Principle or 80/20 Rule

o 80% of an effect comes from 20% of the possible causes.

o Garden: 80% of the peas came from 20% of the pea pods
o Econ: 80% of the land in Italy was owned by 20% of the population
o Business: 80% of your $$$ come from 20% of your clients

v

Look at data through the lens of sparsity

Majority of systematic variation in data is due to a minority of possible
sources
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Sparsity and your digital camera
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Sparsity and your digital camera
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Sparsity and your digital camera

Sorted wavelet  10° bbb SR 1 Keep largest 20%

coefficient magnitudes j | | and

ol 1 invert transform

N : : ; :
-15 . = ' ‘ :

1 0'? 1 1 l i i l 1 l i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eric Chi Robustly finding needles in the HD haystack



Sparsity and genomic data

A question about infectious diseases

Why do most people have innate immunity to leprosy? NEJM Dec 31,
2009

Which genes explain most of the systematic variation?

Predict or explain y € {0,1}" using X € R"*P; n << p.
> SNP: n = 1000s, p = 100, 000s
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o Ss is for Sparsity.

o Haystack = all possible sources of variation. "¢ o @ @ o
o Needle = minority of sources (sparse set of variables) that explain
majority of systematic variation.
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Review: Penalized Regression

0 = argmin L(y,X0)+ XJ(O)

Lack of it Complexity
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Review: Penalized Regression

0 = argmin L(y,X0)+ XJ(O)
0 ~— N
Lack of it Complexity

Least Squares Regression

1
L(y, X8) = Iy — X6}
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Review: Penalized Regression

0 = argmin L(y,X0)+ XJ(O)
2/ S—— ~——
Lack of it Complexity

Least Squares Regression + Ridge/Tikhonov Penalization

1 A
L(y, X8) + \J(6) = Iy — X6]3 + 5 0]
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Review: Penalized Regression

) = argmin L(y,X0)+ XJ(6)
0 — ~——
Lack of it Complexity

Least Squares Regression + ¢1-Penalization?.

1
L(y, X0) +AJ(0) = Sy — X015+ A6

161l =) 6
j

y = X + E

1 Tibshirani 1996, Chen, Donoho 1995
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Global optimality

Objective Solution
2lly — X013 0 = x!rU)
My — X013+ 31013 07 =xTel) (1+A)7
2lly — X613 + A||0]|1 g1 = S(xTr0), \)
Jth partial residual The inner product
rl.(j) =y — ZXH@T' xJ-Tr(j) — correlation between
vy the jth predictor and the jth

partial residual.
Residual variation in'y

unexplained after adjusting
for the effect of all other
predictors, | # J.
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¢1-Penalization and Soft Thresholding

Soft Thresholding

u—A u>A\
S(u,AN)=<u+X u<—M\.
0 ul < A

Recall the optimization
nsly — X683 + 6]
min— —
0 2 y 2 L
07 = S(ijr(f), A)

N.B. Solutions are biased
towards zero!

Eric Chi
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o Ss is for Sparsity.

o Haystack = all possible sources of variation. « & &« o o o
o Needle = minority of sources (sparse set of varlables) that explaln
majority of systematic variation.

o Ee is for “ell-one”-penalized regression.

min L(y, X0) + A|[0]]:
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simple case
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One of these things is not like the others...
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One of these things is not like the others...

0.8-

Y=1IX)

= 04-

Pr

0.2-

0.0- O GO OENGONO I OB 60 00 0 O & °

-6 —4 -2 0 2 4 6
X

Eric Chi Robustly finding needles in the HD haystack



One of these things is not like the others...
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Outliers + ¢; shrinkage = Unfortunate series of events
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Use a different loss function!

B-divergence?
o A family of distortion measures.

1 1

Digllfo) = [ 13*(2) - (1 ; B) 85 (2) + 56" ().

o (3 trades off robustness for efficiency of the resulting estimator.

) = arg min Dﬁ(nyg)
V)

o Optimality conditions

max likelihood min S-div

Siiue(y) =0 X7 ue(yi)fy (vi) =0

’Basu et al. 1998
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Rescue by min (G-div
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The blood, sweat, and tears

Computation

o The optimization problem is not convex.

o Solve the problem as a series of convex approximations
(Majorizations/Auxiliary functions).

o Convex + f1-penalties well studied.
o Guarantees on convergence to stationary points.

@ Some heuristics on choosing starting points.
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o Ss is for Sparsity.

o Haystack = all possible sources of variation. —° = = = =
o Needle = minority of sources that explain majority of systematic
variation.

o Ee is for “ell-one”-penalized regression.

min L(y, X0) + A|[0]]:

o Bb is for Bias.

o f1-penalization bias + implosion breakdown = missed detections.
o Fight bias with a robust loss function.

min D(y|lfo) + A1)
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