A novel motif discovery tool for RNA secondary structures

Sarah Middleton Genomics & Computational Biology University of Pennsylvania

Distributed production

- mRNA already present in dendrites (repressed state)
- 2. Activated synapse triggers translation of nearby mRNAs into protein

Distributed production

- mRNA already present in dendrites (repressed state)
- 2. Activated synapse triggers translation of nearby mRNAs into protein

Distributed production

- mRNA already present in dendrites (repressed state)
- 2. Activated synapse triggers translation of nearby mRNAs into protein

How is dendritic localization regulated? (How does the cell control which RNAs are localized, and when?)

What we know so far

What we know so far

Cytoskeletal transport

What we know so far

How can we identify RNA structure motifs?

Main task:

Given a set of sequences with <u>unknown</u> structure, predict sub-regions that share a common structure (motif).

Main task:

Given a set of sequences with <u>unknown</u> structure, predict sub-regions that share a common structure (motif).

Main task:

Given a set of sequences with <u>unknown</u> structure, predict sub-regions that share a common structure (motif).

Complications:

- A sequence may have no motifs
- Boundary of individual motifs is unknown

Method 1: fold-and-compare

Method 2: align-and-fold

Covariance + MFE

alignment score + structure conservation

NoFold: RNA structure clustering without folding or alignment

RNA sequences

NoFold: RNA structure clustering without folding or alignment

RNA sequences

score against

~2000 Known structures Represented as covariance Models (CMs)

NoFold: RNA structure clustering without folding or alignment

Represented as covariance Models (CMs)

(not shown: additional 1,970 dimensions)

Benchmark: Randomized sequences

Benchmark: Randomized sequences

GUGGAUCACAAUUACAAUCCCCAGGCUGUCUAGGCUAUCUAGACAGCCUGGGGAUUGUAAUUGUGAUCCAC AGUGCCAGUUGAAGCUCUCUUACAUCCUAUAUGUUGCACAUAUAGGAUGUAAGAGAGCUUCAACUGGCACU

• • •

Motifs cluster within the feature space

Motifs cluster within the feature space

Motifs cluster within the feature space

Does this work with real structures?

Family	# Seqs	Avg % identity
5S_rRNA	100	49%
5_8S_rRNA	22	54%
U1	20	48%
U2	70	47%
tRNA	100	40%
Vault	52	50%
U12	27	46%
Hammerhead_3	13	45%
RNaseP_nuc	68	32%
RNaseP_bact_a	100	49%
RNaseP_bact_b	41	53%
U3	38	41%
6S	86	38%
U4	61	45%
SNORD14	7	44%
Metazoa_SRP	17	45%
CsrB	7	53%
Y_RNA	24	47%
U5	82	44%
Histone3	43	45%

\approx	-
\sim	1

1 A
1
\sim

...

Family 1 Family 2

Family 3

Family 20

Family	# Seqs	Avg %
Tanniy		identity
5S_rRNA	100	49%
5_8S_rRNA	22	54%
U1	20	48%
U2	70	47%
tRNA	100	40%
Vault	52	50%
U12	27	46%
Hammerhead_3	13	45%
RNaseP_nuc	68	32%
RNaseP_bact_a	100	49%
RNaseP_bact_b	41	53%
U3	38	41%
6S	86	38%
U4	61	45%
SNORD14	7	44%
Metazoa_SRP	17	45%
CsrB	7	53%
Y_RNA	24	47%
U5	82	44%
Histone3	43	45%

Family	# Seqs	Avg %
		identity
5S_rRNA	100	49%
5_8S_rRNA	22	54%
U1	20	48%
U2	70	47%
tRNA	100	40%
Vault	52	50%
U12	27	46%
Hammerhead_3	13	45%
RNaseP_nuc	68	32%
RNaseP_bact_a	100	49%
RNaseP_bact_b	41	53%
U3	38	41%
6S	86	38%
U4	61	45%
SNORD14	7	44%
Metazoa_SRP	17	45%
CsrB	7	53%
Y_RNA	24	47%
U5	82	44%
Histone3	43	45%

Family	# 5000	Avg %
	# Seqs	identity
5S_rRNA	100	49%
5_8S_rRNA	22	54%
U1	20	48%
U2	70	47%
tRNA	100	40%
Vault	52	50%
U12	27	46%
Hammerhead_3	13	45%
RNaseP_nuc	68	32%
RNaseP_bact_a	100	49%
RNaseP_bact_b	41	53%
U3	38	41%
6S	86	38%
U4	61	45%
SNORD14	7	44%
Metazoa_SRP	17	45%
CsrB	7	53%
Y_RNA	24	47%
U5	82	44%
Histone3	43	45%

Unsupervised clustering

Clustering performance

Average sensitivity: 0.80 Average specificity: 0.98

Complications in real datasets:

- A sequence may have no motifs
- Boundary of individual motifs is unknown

Complications in real datasets:

- A sequence may have no motifs
- Boundary of individual motifs is unknown

Performance: With decoys

Performance: Embedded sequences

Can we use this method to find dendritic localization motifs?

Discovered motifs

Acknowledgments

Kim Lab

Junhyong Kim Derek Stefanik Gehoon Chung Hannah Dueck Jamie Shallcross Jean Rosario Qin Zhu Stephen Fisher Syung-Hun Han Youngji Na

Chantal Francis Hoa Giang Mugdha Khaladkar

Eberwine Lab

Jim Eberwine Jenn Singh Jinhui Wang

Special thanks to CSGF program & Krell for this opportunity!

Structure pictures generated using various services at http://rna.tbi.univie.ac.at/