

ION ACCELERATION BY RELATIVISTIC-INTENSITY LASERS WITH MAGNETIZED ELECTRON FOCUSING

Kathleen Weichman and Alexey Arefiev University of California San Diego July 17, 2018

WHAT CAN A MAGNETIC FIELD DO FOR LASER-DRIVEN ION ACCELERATION?

Kathleen Weichman and Alexey Arefiev University of California San Diego July 17, 2018

THANK YOU DOE CSGF!

Extra thanks to:

Lindsey Eilts

Aric Hagberg

Gian Luca Delzanno

Alex Arefiev

Current support: DOE CSGF, under Grant No. DE-FG02-97ER25308 Future support: DOE Office of Science Grant No. DE-SC0018312

This work used HPC resources of the Texas Advanced Computing Center (TACC) at The University of Texas at Austin and the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

WHAT IS LASER-DRIVEN ION ACCELERATION?

Step 1

Hit a thin solid target with a relativistically intense, short laser pulse

"Short" = 100 fs - 1 ps

Relativisitic intensity: An electron starting at rest becomes relativistic within one laser cycle

 \rightarrow allows p_x (forward momentum)

Arefiev et al., Phys. Plasmas 23, 056704 (20

THIS DOES NOT END WELL FOR THE TARGET...

Expanding plasma mess

Lots of X-rays, too

Laser plasma physics: getting something done before (or while) your experiment blows up

ION ACCELERATION BY ELECTRON SHEATH

Step 2

Electrons are heated by the laser pulse

Relativistic intensity \rightarrow electrons can have forward momentum

ION ACCELERATION BY ELECTRON SHEATH

Step 2

Electrons are heated by the laser pulse

Step 3 Hot electrons go through the target

ION ACCELERATION BY ELECTRON SHEATH

Step 2 Electrons are heated by the laser pulse

Step 3 Hot electrons go through the target

Step 4 Electrons pull ions out of the rear target surface

HOT ELECTRONS SPREAD ALONG TARGET SURFACE

Reduced sheath field \rightarrow lower ion energies

Electron spread \rightarrow ion angular divergence

How to prevent electrons from spreading out? Externally applied magnetic field

WHAT FIELDS ARE NEEDED TO AFFECT ELECTRON MOTION?

Hot electrons should undergo cyclotron
motion within a few microns
→ Kilotesla static magnetic fields

Reference points MRI \sim 1 T Neutron star \sim 100 kT -10 MT Laser magnetic field \sim 30 kT kT-level ns-duration 100 µm-scale Essentially static and uniform for the purposes of this work

Laser-driven capacitor coil target

This is a fundamentally new regime of laser-plasma physics

COMPUTATIONAL DETAILS

EPOCH: open-source particle-in-cell code 2D/3D simulations done at TACC 3D simulation parameters: Up to 80 um x 10 um x 10 um with 30 cells/um ~10 particles/cell (10⁹ numerical particles) 50k to 500k CPU hours (5k to 50k CPU) File sizes up to 30 GB

Scaling for representative 3D laser-plasma problem

3D simulation results are preliminary

Future work will be done at NERSC, to allow increased problem size

THE PROMISE OF ADDING A MAGNETIC FIELD

DOES MAGNETIZED ELECTRON SHEATH ACCELERATION PRODUCE USABLE IONS?

After the initial acceleration, ions have a large ($\sim 5^{\circ}$) angular divergence!

LATER, IONS SEE A FOCUSING FIELD – GOOD FOR TRANSPORT

Ions are pulled back towards the axis, eventually forming an ion beam

PRELIMINARY 3D RESULT: INCREASED ION ENERGY

Are these ions usable?

ARE HIGH ENERGY IONS DIVERGING FROM THE AXIS?

16

APPLICATION TO 900 FS PULSE DURATION — "OPTIMUM" FIELD EXISTS

B _x	Energy in > 5 MeV protons (A.U.)
No field	1
600 T	1.3
1200 T	0.6

Is the self-generated azimuthal field a problem?

* 2D simulation, different plasma conditions than previous work

MAGNETIZED ELECTRON SHEATH ACCELERATION

Hot electron spread successfully limited

Two-stage process:

1) acceleration within bubble

2) focusing and beam formation following escape from bubble

Possible results: higher ion energies; lower divergence; formation of true ion beams of multiple species

Work is ongoing to understand the source of the performance optimum for longer pulse duration

