

Central Dogma

CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement - Scientific Figure on ResearchGate.

Central Dogma

CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement - Scientific Figure on ResearchGate.

Studying mRNA impact on drug discovery

Partial view of isoform repertoire

Long reads allow you to identify:

- Isoform resolution
- Improved annotations
- Gene fusions

New long read technology reduces error rate to .1-1.5%

PacBio's innovation of Circular Consensus Sequencing produced an error rate .1-.5%

a. PacBio SMRT sequencing

Single Zero Mode Waveguide (ZMW)

Readout

SMRT output is the fluorescence pattern in the ZMWs

7

Adapted from PacBio website and Oehler, J.B., Wright, H., Stark, Z. *et al.* The application of long-read sequencing in clinical settings. *Hum Genomics* (2023).

Adapted from Oehler, J.B., Wright, H., Stark, Z. et al. The application of long-read sequencing in clinical settings. *Hum Genomics* (2023).

GUIDE-A Key Question

Does the 3' end alone hold sufficient information to predict isoforms' expression accurately, i.e. can the 3' end reveal key alternative splicing patterns?

Challenges of RNA-seq mapping and quantification Short read tools vs long read tools

Challenges	kallisto	salmon	Oarfish	bambu	IsoQuant
Scalability and efficiency					
Accuracy					
Robustness (to error)					
Flexibility (to different assays)					
Alignment			minimap2	minimap2	minimap2

Alignment challenges short-read mapping long-read mapping C eference eference Ũ L e L d) efe đ query query query query query b) extending a) seeding b) chaining a) seeding c) extending

Sahlin, K., Baudeau, T., Cazaux, B. *et al.* A survey of mapping algorithms in the long-reads era. *Genome Biol* 24, 133 (2023). https://doi.org/10.1186/s13059-023-02972-3

Ir-kallisto Background

Ir-kallisto Background

Effect of k-mer length on DBG in kallisto

ii. Ex.: first 1000 transcripts, *k*-mer=31

k-mer=63

Simulation Benchmark

a PacBio IsoSeqSim Simulation b ONT NanoSim R10.4 Simulation

GUIDE-A: Gene Unambiguous Isoform Deduction Extraction -Algorithm

A machine learning approach for isoform prediction and gene/isoform network detection from 3' RNA-seq data

TCC = transcript compatibility counts TPM = transcripts per million

GUIDE-A Problem Setup

Inputs: 3' end Transcript Compatibility Counts, TCC

Outputs: full length Transcript Abundances, TPM

Find Mapping between 3' end TCC and full length TPM

Mapping is complex; can we use a modified autoencoder to uncover the **correlations** and discover the mapping?

GUIDE-A

Architecture and Setup

Each layer is a Linear Unit.

Rectified Linear Unit (ReLu) activation is used after each layer.

Batch normalization is used preceding the output layer.

Loss is calculated via Sum Squared Errors (SSE).

Training set is 80%, validation is 10%, and test is 10%, which was created by random sampling without replacement.

1618 bulk RNA-seq Sequence Read Archive **Datasets GUIDE-A Results**

12

10

8

6

Runtime Efficiency

Pachter Lab Lior Pachter Delaney Laura Tara Kayla Maria Nikki Ángel **Kristjan** Taleen Gennady Cat Meichen Lambda Joe Rich

Acknowledgements

Mortazavi Lab Ali Mortazavi Dana Wyman Fairlie Reese Jaz Sakr Liz Rebboah

Wold Lab Barbara Wold Diane Trout Brian Williams

Committee Members:

Matt Thomson Pietro Perona Funding: DOE CSGF IGVF Consortium

