An enhanced approach to signal analysis in the XENONnT dark matter experiment

Dr. Sophia Farrell, Ph.D. SSGF 2024 Annual Review | June 2024

The XENONnT Experiment

An underground telescope for dark matter + beyond

- Dark matter: WIMPs, axions, dark photons, etc.
- Neutrinos: CEvNS (solar), neutrino magnetic moment, supernovae, Majorana
- Rare nuclear decays

About XENONnT:

~5900 kg of active liquid xenon target @ LNGS Commissioned in 2020, first science run (SR0) in 2021 ~1 keV energy threshold Low background: ~10 events/(t*y*keV) **Reconstruction: position, interaction type, energy** ~200 scientists

Searching for dark matter Weakly-interacting massive particles (WIMPs)

- One historically-favored theory
- Direct detectors set the most stringent limits
- Limited by background rates
 - ➡ Cosmic rays
 - Radioactivity in detector
 - Experimental artifacts (noise)
 - ➡ Neutrinos

Solar neutrinos

- 70 billion pass through your finger each second
- Few interactions/day in a large-scale detector
- Irreducible background

$p + p \rightarrow D + e^+ + \nu_e$

Flux at Earth:

Solar neutrinos

Second-leading low energy background in XENONnT

 $p + p \rightarrow D + e^+ + \nu_e$

Signatures of solar neutrinos beyond the standard model

- Massive neutrinos have an effective magnetic moment
- Enhances scattering rate at low energies

$$\frac{d\sigma_{\mu}}{dE_{r}} = \mu_{\nu}^{2} \alpha \left(\frac{1}{E_{r}} - \frac{1}{E_{\nu}}\right)$$

In the (minimally-extended) SM:

$$\mu_{\nu} \approx 3 \times 10^{-19} \left(\frac{m_{\nu}}{\text{eV}}\right) \mu_B$$

• If $\mu_{\nu} \gtrsim 10^{-15} \mu_{B}$: Majorana neutrinos

W+

Detecting interactions in XENONnT Dual-phase xenon time projection chamber (TPC)

Current workflow of direct detectors

- Multi-level reconstruction framework
- Inference performed only on highlevel data, inherent loss of information
- To reach inference: selection of data within ROI, based on high-level (incomplete) features
- Careful treatment of artifacts and backgrounds before analysis

Data challenges

- Many signals recorded, few are chosen
- How do we tell the physical signals from the noise?
- Reconstruction depends on accurate signal identification

XENON1T (2022) 10.1103/PhysRevD.106.022001 S2S2504.5 505.5 505.0 Time [ms] 300 400 500 Time [ms]

Classification in unprecedented regimes

Low-energy challenges: if 1-2 quanta produced, signal topology is stochastic

Neutrino enhancements at these energies demand a low energy threshold

The problem of signal classification in XENONnT

- Downsampled representation of high-dimensional, complex waveform
- Deterministic decision boundary requires additional misclassification and quality selection criteria
- Complicated by:
- high background rates
- operational limitations
- dimensionality

[ns] Risetime Area

10.1103/PhysRevD.108.012016

S. Farrell | SSGF 2024 Program Review

Innovation 1: signal classification in XENONnT with a Bayesian network

Naive Bayes Classifier (NBC)

Classifier: observe data, A, and infer P(C | A)

- Attributes are conditionally independent \rightarrow scalable and interpretable
- Powerful even in cases where true dependencies exist

Joint probability formula

$$P(C, A_1, A_2, \dots, A_n) = P(C) \prod_{i=1}^{i=n} P(A_i | C)$$

Conditional probability formula

$$P(C|A_1 = a_1, \dots, A_n = a_n) = \frac{P(C)\prod_{i=1}^n P(A_i = a_i | C)}{P(A_1 = a_1, \dots, A_n = a_n)}$$

Building and tuning a Bayesian network

- Training dataset
- Representation of data, A
- Parameterization (discretization) of attributes, A_i
- Choice of prior, P(C)
- Decision boundary $P(C | \mathbf{A})$ (if deterministic classification)

Representation of attributes, A

- High-dimensional temporal data summed over all PMTs
- Waveform + quantiles
- 100 nodes total (optimized) \bullet
- Each node is discretized, optimized on information density

0.125 0.125Wplitude0.1000.0750.0500.025 0.000

 10^{4}

 10^{3} Time [ns] 10^{2} 10^{1}

 10^{0}

S1

S2

NBC evaluation: winning classifier

S. Farrell | SSGF 2024 Program Review

Naive Bayes Classifier

	True S1	True S2
Predicted S1	$99.999\pm0.001~\%$	0.003 ± 0.001
Predicted S2	$0.001\pm0.001~\%$	99.997 ± 0.001

Straxen algorithm (conventional)

	True S1	True S2
Predicted S1	$99.744 \pm 0.020 \ \%$	0.017 ± 0.004
Predicted S2	$0.057\pm0.010~\%$	99.983 ± 0.004
Unclassified	$0.199\pm0.017~\%$	0.000 ± 0.001

Neural network

	True S1	True S2
Predicted S1	$99.975\pm0.004~\%$	0.007 ± 0.002
Predicted S2	$0.025\pm0.004\%$	99.993 ± 0.002

Evaluation of Naive Bayes Classifier

Single electron classification (given a decision boundary of 0.5) is less biased

Evaluation of NBC

lacksquare

Model query is informative about signal shape relative to training sample

Innovation 2: Signal characterization with a Bayesian network

10.1103/PhysRevD.108.012016

S. Farrell | SSGF 2024 Program Review

Utilizing NBC model output in analysis

- Most signals in data are unphysical and/or undesirable in analysis
- Reject these "noncanonical" backgrounds (and characterize them)

...but accept true signals...

depending on their NBC model output

²²⁰Rn calibration data

The NBC method of signal selection

Can we improve retention of information and efficiency by relying only on waveforms to select for signal quality?

Standard: 8 cuts based on many 1-D representations of waveform

NBC: 1 unifying metric for each event signal which encodes high-D waveform

Robust background rejection power

Effect of NBC selections on data

Total event acceptance

SR0 ER background components

Component	Fit (this work)	Fit (prev. work)
214 Pb	1050 ± 130	960 ± 120
⁸⁵ Kr	100 ± 60	90 ± 60
Materials	280 ± 50	270 ± 50
¹³⁶ Xe	1580 ± 60	1550 ± 50
Solar ν	310 ± 30	300 ± 30
¹²⁴ Xe	250 ± 30	250 ± 30
AC	0.71 ± 0.03	0.71 ± 0.03
¹³³ Xe	80 ± 60	150 ± 60
^{83m} Kr	101 ± 17	80 ± 16

 $\chi^2/N_{\rm DOF}$

128.6/128 = 1.004 134.0/128 = 1.047

 Slightly higher rates of low-energy components due to improved efficiency

Test of signal hypothesis: μ_{1}

 10^{-10}

 $\mu_{
u}$

• 90% CL upper limit:

 $\mu_{\nu} < 1.3 \times 10^{-11} \mu_{R}$

- No μ_{ν} favored over 3σ
- Background-only confirmation

Promising future applications

- Lowering the energy threshold to 2-quanta \bullet observation - better μ_{μ} , DM inference
- Ultimately: designing Bayesian networks for fully probabilistic analyses

Acknowledgements

- DOE NNSA Stewardship Science Graduate Fellowship
- My wonderful advisor: Prof. Aaron Higuera at Rice U.
- LLNL practicum team: Adam Bernstein and Marc Bergevin for their support on a ML-based study of a reactor antineutrino detector (paper in prep)

Lawrence Livermore National Laboratory

Questions: <u>drfarrellconsulting@gmail.com</u>

