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Elevated temperatures
Difficult to machine
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Additive manufacturing of 
aerospace/defense parts
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Ti-6Al-4V (α+β alloy) dominates AM
Extensively researched with robust microstructure-

processing relationships and legacy data 

Thermal cycling presents some processing difficulties 
(ie. residual stress cracking)

S. Liu and Y. C. Shin, “Additive manufacturing of Ti6Al4V alloy: A review,” Materials 
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Background
Metastable β-Ti

3Y. Zhu et al., “Ultrastrong nanotwinned titanium alloys through additive manufacturing”, 
Nat. Mater., vol. 21, no. 11, Art. no. 11, Nov. 2022, doi: 10.1038/s41563-022-01359-2.

Class of titanium which retains high 
temperature β-phase after rapid cooling
• Starting ‘metastable’ β microstructure 

facilitates enhanced properties
• Deformation induced transformations
• High volume of precipitates

UTS ~1600MPa El. 5.4%

UTS ~1400 MPa El. 7.8%

As-Built

Slip Deformation

Deformation 
Induced

Improvements in 
ductility and damage 

tolerance

~500MPa

https://doi.org/10.1038/s41563-022-01359-2


Experiments and Sample Fabrication
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Used to calibrate models 

Able to understand alloy 
response at melt-pool scale
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Single Spot-Melts
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Top-Down Cross-Section

T.W. Duerig, et al., Formation and reversion of stress induced 
martensite in Ti-10V-2Fe-3Al, Acta Metallurgica 30 (1982) 
2161–2172. https://doi.org/10.1016/0001-6160(82)90137-7.
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https://doi.org/10.1016/0001-6160(82)90137-7


Single Spot-Melts

5

Top-Down Cross-Section

We know quenched 
Ti-1023 is single-phase…

T.W. Duerig, et al., Formation and reversion of stress induced 
martensite in Ti-10V-2Fe-3Al, Acta Metallurgica 30 (1982) 
2161–2172. https://doi.org/10.1016/0001-6160(82)90137-7.
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Transformation Induced Plasticity 
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Deformation

BCC β-phase
Orthorhombic 

α’’-phase

σtension

σcompression

Melt Pool
HAZ

Tensile stresses from 
thermal contraction of 

melt-pool

Compressive stresses from 
surrounding material inhibit 

this contraction



Thermomechanical Model - SYSWELD
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Single Spot-Melts
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Overlapping Spot-Melts
139W Triple Hit
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L. Lilensten et al., “On the heterogeneous nature of deformation in a strain-transformable beta metastable 
Ti-V-Cr-Al alloy,” Acta Materialia, vol. 162, pp. 268–276, Jan. 2019, doi: 10.1016/j.actamat.2018.10.003.

Schmid Factor used to predict deformation mechanism of each grain

110 1�11

112 11�1

332 11�3

Dislocation slip

Martensite shear

Twinning

BCC β-phase

Loading 
Direction

geometric factor controlling shear stress 
on a specific slip system due to loading
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An Aside– Schmid Factor

https://doi.org/10.1016/j.actamat.2018.10.003
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Rasters
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Rasters

15

Travel Direction

Build 
Direction

BCC 
β-Phase

139W & 0.5m/s

0.4 0.5
Schmid Factor



Rasters
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Rasters
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Decreased grain size increases 
stress necessary for TRIP



Remelted Rasters
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Summary & Conclusions
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Accommodation of residual stresses/strains in Ti-1023 may produce 
crack-free parts with tuned microstructures and properties. 

Melt-pool size 
Thermal cycling

Schmid Factor
Grain Size

TRIP is influenced by processing and microstructural features 

σtension

σcompression

Melt Pool
HAZ 0.4 0.5

Schmid Factor

Questions? 
jasien@mines.edu
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